
1IBM TJ Watson Research Center, 19 Skyline Drive, Hawthorne, NY 10532, USA
rkhalaf@us.ibm.com

2Institute of Architecture of Application Systems, University of Stuttgart, Germany
{kopp,leymann}@iaas.uni-stuttgart.de

Maintaining Data Dependencies Across
BPEL Process Fragments

Rania Khalaf1, Oliver Kopp2, Frank Leymann2

© 2008 World Scientific
See also http://www.worldscinet.com/ijcis/17/1703/S0218843008001828.html

@article{KKL08,
author = {Rania Khalaf and Oliver Kopp and Frank Leymann},
title = {Maintaining Data Dependencies Across

{BPEL} Process Fragments},
journal = {International Journal of

Cooperative Information Systems (IJCIS)},
year = {2008},
volume = 17,
number = 3,
pages = {259‐‐282},
doi = {10.1142/S0218843008001828},
publisher = {World Scientific}

}

:

http://dx.doi.org/10.1142/S0218843008001828

April 19, 2008 2:46 WSPC/INSTRUCTION FILE data-dependencies–ws-
ijcis

International Journal of Cooperative Information Systems
c© World Scientific Publishing Company

MAINTAINING DATA DEPENDENCIES
ACROSS BPEL PROCESS FRAGMENTS

RANIA KHALAF

IBM TJ Watson Research Center, 19 Skyline Drive
Hawthorne, NY 10532, USA

OLIVER KOPP, FRANK LEYMANN

IAAS, Universität Stuttgart, Universitätsstr. 38

70569 Stuttgart, Germany

Received (Day Month Year)

Revised (Day Month Year)

Continuous process improvement (CPI) may require a BPEL process to be split amongst
different participants. In this paper, we enable splitting standard BPEL – without requiring

any new middleware for the case of flat flows. The solution also supports splitting loops
and scopes that have compensation and/or fault handlers. When splitting loops and
scopes, we extend existing Web services standards and frameworks in a standard compliant

manner in order to support the resulting split control (not data) between the fragments.
Data dependencies, however, are handled directly using BPEL constructs placed in the
fragments even for split loops and scopes.

We present a solution that uses a BPEL process, partition information, and results

of data-flow analysis to produce a BPEL process for each participant. The collective

behavior of these participant processes recreates the control and data flow of the non-split
process. Previous work presented process splitting using a variant of BPEL where data

flow is modeled explicitly using ‘data links’. We reuse the control flow aspect from that
work as well as the control flow aspect from our work on splitting loops and scopes,
focusing in this paper on maintaining the data dependencies in standard BPEL.

Keywords: Web services; fragments; business process; BPEL.

1. Introduction

When outsourcing non-competitive parts of a process or restructuring an organization,
it is often necessary to move fragments of a business process to different partners,
companies, or simply physical locations within the same corporation. In Ref. 1 we
provided a mechanism that takes a business process and a user-defined partition of
it between participants, and creates a BPEL2 process for each participant such that
the collective behavior of these processes is the same as the behavior of the unsplit
one. The process model given as input was based on a variant of BPEL, referred to
as BPEL-D, in which data dependencies were explicitly modeled using ‘data links’.

1

April 19, 2008 2:46 WSPC/INSTRUCTION FILE data-dependencies–ws-
ijcis

2 Rania Khalaf, Oliver Kopp, Frank Leymann

Our work in this paper aims to study splitting a process specified in standard
compliant BPEL, in which data dependencies are – by definition – implicit. We want
to do so while maintaining transparency and going as far as possible without requiring
additional middleware. New middleware is only used for control dependencies and
only for the advanced cases of splitting loops and fault/compensation handling
scopes. Even in that case, it is added as an extension in a modular, standards
compliant manner. Transparency here means that (1) the same process modeling
concepts/language are used in both the main process and the processes created from
splitting it; (2) process modifications made to transmit data and control dependencies
are easily identifiable in these processes, as are the original activities. This enables the
designer to more easily understand and debug the resulting processes, and enables
tools to provide a view on each process without the generated communication
activities.

Data-flow analysis of BPEL processes returns data dependencies between activi-
ties. On a cursory glance, it seems that it would provide enough information to create
the necessary BPEL-D data links. In fact, that was the assumption made in our
previous work1 when discussing how the approach could be used for standard BPEL.
While for some cases that would be true, Sec. 2 will show that the intricacies of the
data sharing behavior exhibited by BPEL’s use of shared variables, parallelism, and
dead path elimination (DPE) in fact require a more sophisticated approach. DPE2

is the technique of propagating the disablement of an activity so that downstream
activities do not hang waiting for it. This is especially needed for an activity with
multiple incoming links, which is always a synchronizing join: An activity must wait
until all its incoming links have fired, upon which time it evaluates a ‘joinCondition’.
This condition is in terms of the status of the incoming links and its default value is
an ‘or’. If the join condition evaluates to true, the activity runs; otherwise, it gets
disabled and fires all its outgoing links with the value ‘false’. In BPEL, this behavior
occurs through the use of the joinFailure built-in fault which is thrown if an activity’s
join condition evaluates to false. The activity may choose to suppress this fault by
setting (either at the activity or process level) the attribute ‘suppressJoinFailure’ to
true. The result is similar to surrounding the activity with a scope containing an
empty fault handler for the joinFailure fault. By empty fault handler, we mean a
fault handler whose body contains an ‘empty’ activity. More information on BPEL
fault propagation and DPE in particular is provided in Ref. 3.

Our work explains the necessary steps required to fully support splitting a stan-
dard BPEL process based on business need without needing specialized middleware.
A main enabler is reproducing BPEL’s behavior in BPEL itself.

2. Scenario and Overview

Consider the purchasing scenario in Fig. 1: It provides a 10% discount to members
with ‘Gold’ status, a 5% discount to those with ‘Silver’ status, and no discount to all
others. After receiving the order (A) and calculating the appropriate discount (C, D,

April 19, 2008 2:46 WSPC/INSTRUCTION FILE data-dependencies–ws-
ijcis

Maintaining Data Dependencies Across BPEL Process Fragments 3

orderInfo

response

paymentInfo

orderInfo.status==”silver”orderInfo.status==”gold”

response

response.text += “ 10% discount”
paymentInfo.amt = paymentInfo.amt*0.9

response.text+= “ 5% discount”
paymentInfo.amt = paymentInfo.amt*0.95

paymentInfo.actNum = orderInfo.accountNumber
response.text= “Dear customer, ... ”

paymentInfo.amt = orderInfo.totalPrice + 5*size(deliveries))
B

C D

H

variables:

delivered

KEY:

while

receive

reply

invoke

assign

processPayment(pymtInfo) G

delivered +=1

deliverSubShipment(delivered, orderInfo) J

K
I

delivered < orderInfo.numDeliveries

processOrder(orderInfo) F

orderInfo.orderStatus=”price calculated”
delivered = 0

E

orderInfo A

Fig. 1. Sample: an ordering process that provides discounts to Gold and Silver customers.

or neither), the order status is updated (E), the order is processed (F), the customer
account is billed (G), and a response is sent back stating the discount received (H).
The deliveries are made in more than one shipment as shown by the loop (I). Each
shipment is processed (J) by a service that takes the order information and a counter
of how many shipments have already been sent out. The number of shipments is
updated (K) and the loop iterates until all shipments are made. We will show how
data is appropriately propagated between participant processes, created by splitting
this example, using BPEL constructs.

Activity F reads data from A and E. In BPEL-D1, data links from different
activities were allowed to write to the same location of the target activity’s input
container with a fixed conflict resolution policy of ‘random’. Data was considered
valid if the activity that wrote it had completed successfully. For cases where data is
needed from only one activity (e.g.: A to B, C, D above), data links suffice. However,
consider G. It reads pymtInfo, whose value of amt comes from B, and possibly from
C or D. If one had drawn a data link from all three and the status is gold, then B
and C would have run successfully but not D. There would be a race between B and
C’s writes of amt, when only C should have won. A different resolution policy, such
as ‘last writer wins’, is needed here. However, this cannot be realized using the order
of the incoming messages carrying the required data: they may get reordered on the
network. Even if synchronized clocks4 are used, BPEL does not have constructs to

April 19, 2008 2:46 WSPC/INSTRUCTION FILE data-dependencies–ws-
ijcis

4 Rania Khalaf, Oliver Kopp, Frank Leymann

handle setting variable values based on time stamps.
A high level overview of the approach we propose is: Given a BPEL process,

a partition, and the results of data-flow analysis on that process, we produce the
appropriate BPEL constructs in the process of each participant to exchange the
necessary data. For every reader of a variable, writer(s) in different participants
need to send both the data and whether or not the writer(s) ran successfully. The
participant’s process that contains the reader receives this information and assembles
the value of the variable. The recipient uses a graph of receive and assign activities
reproducing the dependencies of the original writers. Thus, any writer conflicts and
races in the non-split process are replicated.

In more detail, the steps of our approach are: (1) Create a writer-dependency-
graph (WDG) that encodes the control dependencies between the writers. (2)
To reduce the number of messages, use information about a particular partition:
Create a participant-writer-dependency-graph (PWDG) that encodes the control
dependencies between regions of writers whose conflicts can be resolved locally (in
one participant). (3) Create Local Resolvers (LR) in the processes of the writers
to send the data. (4) Create a Receiving Flow (RF) in the process of the reading
activity that receives the data and builds the value of the needed variable.

Criteria The criteria we aim to maintain is that conflicting writes between multiple
activities are resolved in a manner that respects the explicit control order,
as opposed to runtime completion times, in the original process model.

Restriction We assume that data flow follows control flow. We disallow splitting
processes in which a write and a read that are in parallel write to the
same location. BPEL does allow this behavior, but it is a violation of the
Bernstein Criterion5,6. The Bernstein Criterion states that if two activities
are executed sequentially and they do not have any data dependency on
each other, they can be reordered to execute in parallel.

3. Background

This paper builds on our prior work presented in Ref. 1, for which we now provide
an overview. We reuse the parts of the algorithm that create the structure of the
processes, the endpoint wiring, and splitting of control links. In order to enable
splitting standard BPEL (i.e. without explicit data links) we need to specify (1) how
data dependencies are encoded (see partition dependent graphs introduced below)
and (2) how data dependencies are reflected in the generated BPEL processes by
using just standard BPEL constructs.

A designer splits a process by defining a partition of the set A of all its simple
activities. Consider P , a set of participants. Every participant, p ∈ P , consists of
a participant name and a set of one or more activities such that: (i) a participant
must have at least one activity, (ii) no two participants share an activity or a name,
and (iii) every simple activity of the process is assigned to a participant.

Scopes and loops are split by assigning the activities in them to different partners.

April 19, 2008 2:46 WSPC/INSTRUCTION FILE data-dependencies–ws-
ijcis

Maintaining Data Dependencies Across BPEL Process Fragments 5

I

A

B C

D

E

FG

H

Lc(I) = y; P1 = fpw; px; py; pzg
pw = (w; fG;Jg); px = (x; fA;Bg); py = (y; fE;C;Kg); pz = (z; fD; F; Hg)
Lc(I) = y; P1 = fpw; px; py; pzg
pw = (w; fG;Jg); px = (x; fA;Bg); py = (y; fE;C;Kg); pz = (z; fD; F; Hg)

w yx z

J K

Fig. 2. A partition, P1, of the process in Fig. 1

The designer does not assign the scope or loop itself in a participant. The designer
must also associate, for every split loop, one participant to be responsible for
evaluating the loop’s condition. This is done using the map Lc that associates every
split loop name, with its responsible participant name.

The result is one BPEL process and one WSDL file per participant, as well as a
global wiring definition. Fig. 2 shows a partition of the process in Fig. 1.

The subset of BPEL constructs that our algorithm can consume is:

• Processes with ‘suppressJoinFailure’ set to ‘yes’ (DPE on)
• Exactly one correlation set, to enable properly routing inter-participant messages

that transmit control and data dependencies
• Any number of partnerLinks
• The supported structured activities are: ‘flow’, ‘while’ ‘scope’.
◦ Links are allowed, but not from/to the boundary of a ‘flow’ activity.
◦ Scopes may have compensation and/or fault handlers but not event or explicit

termination handlers.
◦ Loops and scopes must be uniquely named within a process.
◦ Data written in a split loop and needed after the loop is restricted to be only

for whole variables.
◦ The join condition of a split loop or scope is restricted to a conjunction of the

local join conditions of each fragment of a split loop or scope.
◦ Compensation is a recovery mechanism, and thus must not fail. Compensation

handlers data behavior is that of BPEL 1.1: Compensation handlers read data
from a snapshot of the process state taken when their associated scope instance
completed and do not write data visible outside of the compensation handler
itself.

◦ A fault handler is restricted to only read from the faulting activity but may
write to any variable.

April 19, 2008 2:46 WSPC/INSTRUCTION FILE data-dependencies–ws-
ijcis

6 Rania Khalaf, Oliver Kopp, Frank Leymann

O true,x xtmp
x=xtmp.dataxtmp.status true P

false

O P
Set joinCondition
to ignore this link

M Nq
M q true

s s N

false No modification
to joinCondition

Original Process Partition 1 Partition 2

C
on

tro
l L

in
k

D
at

a
Li

nk

Fig. 3. Summary of link splitting presented in Ref. 1: the rectangle is a fault handler that catches
the BPEL ‘joinFailure’ fault. Dashed line is a message.

• Simple BPEL activities (except ‘terminate’, ‘throw’, ‘compensate’, and endpoint
reference copying in an ‘assign’).
• A ‘receive’ and its corresponding ‘reply’ are disallowed from being placed in

different participants.

The main idea of the approach of our prior work1 is to split of control and data
links by adding activities in the participant processes as shown in Fig. 3. The top
row shows splitting a control link with a transition condition q between M and N.
To transmit the value of the link to N in participant 2, a scope with a fault handler
for ‘joinFailure’ is used in participant 1. The body of the scope contains an invoke
with ‘suppressJoinFailure’ set to ‘no’. The invoke sends ‘true()’ if the link from M
evaluates to true. If not, then that invoke throws a joinFailure, because DPE is off at
the invoke (suppressJoinFailure=no). The joinFailure is caught by the fault handler,
which contains an invoke that sends ‘false()’. Participant 2 receives the value of the
link, using a ‘receive’ activity that is in turn linked to N with a transition condition
set to the received value. This is the status, determined at runtime, of the link from
M to N in the original process.

The bottom row shows splitting a data link between O and P. We use, in
participant 1, a similar construct to that of a split control link. ‘true()’ is used as
the transition condition and the data is sent if O completes successfully. If O fails or
is skipped, the invoke in the fault handler sends ‘false()’ and an empty data item is
sent.

In participant 2, a receiving block is created. Such a receiving block consists of
(1) a receive activity receiving the data into a uniquely named variable r, (2) an
assign activity copying from r.data to the desired variable, and (3) a link between
them conditional on r.status. The message from participant 1 is written in xtmp. If
the status is true, the assign writes the data to x. Otherwise the assign is skipped.
P must wait for the data but does not depend on whether x was written, so the join
condition of P is modified to ignore this new incoming link.

Having explained how explicit control and data are split, we move to the two
other types of dependencies: implicit control dependencies found in loops and scopes

April 19, 2008 2:46 WSPC/INSTRUCTION FILE data-dependencies–ws-
ijcis

Maintaining Data Dependencies Across BPEL Process Fragments 7

and implicit data dependencies found in BPEL shared variables. For the former, we
provide a brief overview of our solution. On the other hand, the latter is the focus of
the main contributions of this paper and will be handled throughout the remaining
sections.

3.1. An Overview of Splitting Implicit Control Flow: Loops and

Scopes

An initial idea for handling the control dependencies resulting from splitting scopes
and loops was to use variations on the above in-fragment sending and receiving pat-
terns. However, this drastically increases the amount of activities and the complexity
of the fragments: one part of a split loop may lack enough information to determine
when it may iterate again or what the value of the loop condition is. In the case
of a split scope, one part needs to be notified if another part has thrown a fault
and that needs to be handled before it can complete. In some cases this becomes
intractable because no fragment alone has all the necessary information about the
original non-split process, such as is the case for determining default compensation
order of nested scopes which depends on the control paths between these scopes
in the unsplit process. An example of where it would be possible yet complex to
use sending and receiving patterns is in splitting loops: if one fragment of a loop
completes then it has to wait for all others to complete and also notify them that it
itself has completed. Therefore, it is worth bringing in additional capabilities than
what the BPEL language can provide if one needs to split the control behavior of
BPEL loops and scopes.

This is the point that using only BPEL itself is not adequate. However, a goal
of this work was to minimize the use of specialized middleware and not require
replacing one’s existing platforms and systems. We solve this problem in a manner
that is compliant with the Web services standards, by (1) providing extensions to
the BPEL language in the form of three new attributes to denote that a scope or
loop is a fragment and to determine which loop fragment is responsible for the loop
condition. These extensions are only needed in the resulting fragments and are not
used in the non-split process; (2) providing two new protocols that plug into the
WS-Coordination framework7 to enable the proper behavior to take place between
the fragments of split loops and scopes.

The protocols complement and control local engine behavior; they do not replace
it. This approach requires providing the coordinator with a-priori information, such
as scope nesting, number of fragments, location of handlers, and compensation order.
These are encoded in structures created when creating the fragment processes from
the non-split process. They are sent to the coordinator at deployment time.

Note that if the only split scope is the process itself and this scope does not
contain fault handlers or nested scopes with compensation handlers or split loops,
then coordination may be used but is not needed. Instead a pattern of fault and
event handlers is offered that propagates a fault from any of the fragments to the

April 19, 2008 2:46 WSPC/INSTRUCTION FILE data-dependencies–ws-
ijcis

8 Rania Khalaf, Oliver Kopp, Frank Leymann

others and causes termination of them all. This pattern is illustrated in our BPEL
solution for RosettaNet8.

An implementation of the presented solution for propagating control between
fragments of split loops and scopes requires: (1) implementations of the new protocols
to plug into a WS-Coordination implementation, (2) Extending a BPEL engine
to: (a) Understand new language extensions for split loops and scopes, (b) affect
navigation based on protocol messages, (c) trigger protocol messages based on
navigations. One implementation of this approach is presented in Ref. 9: It extends
a BPEL engine in a pluggable modular manner, as detailed by a pluggable BPEL
architecture10 and using the loop and scope coordination protocol definitions11.

One must note that this is one solution for addressing split control dependenices
for loops and scopes. The problem of data dependencies that is the main focus of
this paper is nearly orthogonal and in fact does not use the coordination protocols.
However, we provide this overview of the split loops/scopes control solution to
provide the reader with a complete picture of how splitting a BPEL process can
take place. As this paper is focused on data dependencies, further details of the
protocols and the coordination approach are not elaborated here. For more details
on the end-to-end splitting approach for BPEL, we refer the reader to Ref. 12.

4. Related Work

There is a sizable body of work on splitting business processes, covered in more
details in Ref. 1. The most relevant using BPEL is Nanda et. al’s work13 where a
process is broken down into several BPEL processes using program analysis and
possibly node reordering, with the aim of maximizing the throughput when multiple
instances are running concurrently. They claim data-flow analysis on BPEL can lead
to enough information to easily propagate data. However, they support a limited set
of dependencies because they do not handle faults — in particular those needed for
Dead-Path-Elimination.

Alternative approaches for maintaining data dependencies across processes are
those that do not require standard BPEL, use completely new middleware, or tolerate
fragmentation obfuscation. In the non-BPEL arena, the most relevant in splitting
processes are the use of BPEL-D1 (explicit data links) which is a simpler case of
this paper’s algorithms, van der Aalst and Weske’s P2P approach14 for multi-party
business processes using Petri Nets, and Muth et. al’s work on Mentor15 using
State Charts. In the P2P work, a public workflow is defined as a Petri Net based
Workflow Net, with interactions between the parties defined using a place between
two transitions (one from each). Then, the flow is divided into one public part per
party. Transformation rules are provided to allow one the creation of a private flow
from a single party’s public one. In Mentor, a state and activity chart process model
is split so that different partners can enact its different subsets. Data flow in activity
charts, however, is explicitly modeled using labeled arcs between activities — much
simpler to split than BPEL’s shared variables.

April 19, 2008 2:46 WSPC/INSTRUCTION FILE data-dependencies–ws-
ijcis

Maintaining Data Dependencies Across BPEL Process Fragments 9

For new middleware instead of our approach, one could explore a wide variety of
other ways of propagating data. Examples include: shared data using space-based
computing16; distributed BPEL engines like the OSIRIS system17; modifying a
BPEL engine to support using data from partially ordered logical clocks4 along with
write conflict resolution rules.

Dumas et. al translate a process into an event based application on a space-based
computing runtime, to enable flexible process modeling18. While not created for
decomposition, it could be used for it: the process runs in a coordination space
and is thus distribution-friendly. The SELF-SERV Project19 provides a distributed
process execution runtime using state-charts as the process model. In both these
works, the result is not inline with our goals: the use of a non-BPEL model (UML
Activity diagrams, state charts), the requirement of new middleware (coordination
space, SELF-SERV runtime), and lack of transparency because runtime artifacts
are in a different model (controllers, coordinators) than the process itself.

Mainstream data-flow analysis techniques20 do not address BPEL’s special
challenges due to its use of parallelism and especially Dead-Path-Elimination. The
application of the Concurrent Single Static Assignment Form (CSSA)21 to BPEL
is shown in Ref. 22. The result of the CSSA analysis is a possible encoding of the
use-definition chains, where the definitions (write) of a variable for every use (read)
are stated. Thus, the CSSA form can be transformed to provide a set of writers for
each reading activity which can be in turn used as one of the inputs to our approach.

We are not aware of any work that propagates data dependencies among fragments
of a BPEL process in the presence of dead-path elimination and using BPEL itself.

5. Encoding Dependencies

In this section, we describe how the necessary data dependencies are captured and
encoded. The Fig. 1 scenario is used throughout to illustrate the various steps. The
presented algorithms require the results of a data-flow analysis on the process. One
such algorithm, detailed in Ref. 23 and Ref. 24, was created specifically for this
approach. Its details are out of scope for this paper. Any data-flow analysis algorithm
on BPEL is usable provided it can handle dead path elimination, parallelism, and
provide the result (directly or after manipulation) explained below.

One challenging area is in handling writes to different parts of a variable. Our
approach handles not only writes to an entire variable, but can handle multiple
queries of the form that select a named path (i.e.: (/e)*, called lvalue in the BPEL
specification) and do not refer to other variables. For example, consider w1 writes
x.a, then w2 writes x.b, then r reads x; r should get data from both writers and in
such a way that x.b from w1 does not overwrite x.b from w2 and vice versa for x.a.
However, if they had both written to all of x, r would need x from just w2. On the
other hand, whether an activity reads all or part of a variable is treated the same
for the purposes of determining which data to send.

The data-flow algorithm result should provide for each activity a, and variable x

April 19, 2008 2:46 WSPC/INSTRUCTION FILE data-dependencies–ws-
ijcis

10 Rania Khalaf, Oliver Kopp, Frank Leymann

read by a (or any of the transition conditions on a’s outgoing links), a set Qs(a, x).
Qs(a, x) groups sets of queries on x with writers which may have written to the
same parts of x expressed in those queries by the time a is reached in the control
flow. Qs(a, x) is thus a set of tuples, each containing a query set and a writer set.
The representation of a query does not include the variable itself, i.e. ‘.a’ instead
of ‘x.a’. The symbol ε is used to indicate the whole variable and is treated as the
empty string in the algorithms that follow.

Consider w1, w2, and w3 that write to x such that their writes are visible to a
when a is reached. Assume they respectively write to {x.b, x.c}, {x.b, x.c, x.d}, and
{x.d, x.e}. Then

Qs(a, x) = {({x.b, x.c}, {w1, w2}), ({x.d}, {w2, w3}), ({x.e}, {w3})

Loops and fault/compensation handlers are collapsed in these sets. Therefore, the
writers in Qs(a, x) have the following properties:

• If a is in a loop, then all the writers must precede a in the loop and belong to the
same loop
• Writers that are in a loop not containing a are represented in Qs(a, x) as one

writer representing the largest loop containing these activities that does not also
contain a.
• If a is in a compensation handler, then all the writers must also belong to this

compensation handler.
• Each query set contains the largest queries which these writers write to. For

example, if w1, w2 both write to x.b and x.b.e, then the resulting tuple would be
({.b}, {w1, w2})

In order to support split loops and scopes, the data-flow algorithm should also be
able to provide (directly or after manipulation) the following sets that have the
same structure as Qs(a, x), but the writer sets differ as follows:

• For each loop l represented as a writer in a Qs(a, x), where x is a variable read
by a and a is any activity not nested in l, a set Qpostloop

s (l, x) whose writers are
all writers in the loop whose writes reach a.
• For each loop l and each variable x, a set Qpreloop

s (l, x) whose writers are all
writers not nested in the loop that are read by any activity nested in the loop.
• For each loop l and each variable x read by an activity in l, a set Qintraloop

s (l, x)
whose writers of x are only those which are nested in l and not in any other loop
l’ in l and whose writes reach the next iteration of l.
• For each compensation handler h and variable x read by an activity in h, a set
Qprehandler

s (h, x) whose writers are not in h and whose writes reach activities in h.

Consider Ad(a, x) to provide the set of all writers that a depends on for a variable
x that it reads: using πi(t) to denote the projection to the ith component of a tuple t,
Ad(a, x) =

⋃
qs∈Qs(a,x) π2(qs).

April 19, 2008 2:46 WSPC/INSTRUCTION FILE data-dependencies–ws-
ijcis

Maintaining Data Dependencies Across BPEL Process Fragments 11

5.1. Writer Dependency Graph (WDG)

We define a writer dependency graph (WDG) for activity a and variable x to be
the graph representing the control dependencies between the activities in Ad(a, x)
following the steps shown below. Recall that loops are collapsed due to the construc-
tion of Qs whereby writers in a loop that does not contain a are treated as a single
node corresponding to the loop. Thus the structure is a Directed Acyclic Graph. We
have: WDGa,x = (V,E) where the nodes are the writers:

V = Ad(a, x) ⊂ A

As for the edges, if there is a path in the process between any two activities in Ad

that contains no other activity in Ad, then there is an edge in the WDG connecting
these two activities.

In the presence of fault handler on a scope, we consider that there exists a path
from all activities in the body of the scope to all activities with no incoming links
in that scope’s fault handlers. Recall that we restrict data flow from outside the
fault handler to inside it to be only from the faulting activity. The value of data
from the faulting activity will be transmitted to the fault handler fragments using
the coordinator. Therefore, if a is in a fault handler then all writers in Ad(a, x) will
belong in the same fault handler.

On the other hand, all the writers in the WDG for a reader in a compensation
handler will belong in that compensation handler due to the restriction that activities
in compensation handlers cannot write data visible outside the handler itself.

A WDG is not dependent on a particular partition. Consider F in
Fig. 1. Ad(F, orderInfo) = {A,E}. E is control-dependent on A; therefore,
WDGF,orderInfo = ({A,E}, {(A,E)}). Another example is WDGG,pymtInfo =
({B,C,D}, {(B,C), (B,D)}).

To reduce the number of messages exchanged between partitions to handle the
split data, one can: (i) use assigns for writers in the partition of the reader; (ii) join
results of multiple writers in the same partition when possible. The next section
shows how to do so while maintaining the partial order amongst partitions.

5.2. Partitioned Writer Dependency Graph (PWDG)

The partitioned writer dependency graph for a given WDG is the graph representing
the control dependencies between the sets of writers of x for a based on a given
partition of the process. A PWDG node is a tuple, containing a partition name and
a set of activities. Each node represents a ‘region’. A region consists of activities of
the same partition, where no activity from another partition is contained on any
path between two of the region’s activities. The regions are constructed as follows:

(i) For each node that corresponds to a split loop, choose an ‘owning participant’:
the one with the lowest number of necessary inter-fragment messages based on
the location of the writers nested in the loop and of the reader. A tie is broken
through random selection.

April 19, 2008 2:46 WSPC/INSTRUCTION FILE data-dependencies–ws-
ijcis

12 Rania Khalaf, Oliver Kopp, Frank Leymann

(ii) Place a temporary (root) node for each partition, and draw an edge from it to
every WDG activity having no incoming link whose source activity is in that
partition. This root node is needed to build the subgraphs in the next step.

(iii) Form the largest weakly connected subgraphs where no path between its activities
contains any activities from another partition.

(iv) The regions are formed by the subgraphs after removing the temporary nodes
added in step ii.

Each edge in the PWDG represents a control dependency between the regions. The
edges of the PWDG are created by adding an edge between the nodes representing
two regions, r1 and r2, if there exists at least one link whose source is in r1 and
whose target is in r2.

Consider the partition P1 in Fig. 2. The PWDG for F and variable orderInfo,
and the PWDG of G and variable pymtInfo are therefore as follows:

PWDGF,orderInfo,P1 = ({n1 = (x, {A}), n2 = (y, {E})}, {(n1, n2)})
PWDGG,pymtInfo,P1 = ({n1 = (x, {B}), n2 = (y, {C}), n3 = (z, {D})},

{(n1, n2), (n1, n3)})

Next, consider a different partition, P2, similar to P1 except that C is in pz with D,
instead of py, then the PWDG of H and response has only two nodes:

PWDGH,response,P2 = ({n1 = (x, {B}), n2 = (z, {C,D})}, {(n1, n2)})

If all writers and the reader are in the same partition, no PWDG is needed or
created. Every PWDG node results in the creation of constructs to send the data in
the writer’s partition and some to receive it in the reader’s partition. The former
will be the Local Resolvers (Sec. 5.3). The latter will be part of the Receiving Flow
for the entire PWDG (Sec. 5.4).

5.3. Sending the necessary values and the use of Local Resolvers

A writer sending data to a reader in another participant needs to send both whether
or not the writer was successful and if so, also the value of the data. We name the
pattern of activities constructed to send the data a Local Resolver (LR).

If there is only one writer in a node of a PWDG, then: if the node is in the
same partition as the PWDG, do nothing. Otherwise, the Local Resolver is simply a
sending block as with an explicit data link (Fig. 3, partition 1).

If there is more than one writer, the algorithm below is used. Basically, conflicts
between writers in the same PWDG node, n = (p,B), are resolved in the process of
p: An activity waits for all writers in n and collects the status for each set of queries.

Assume a PWDG for variable x, and the reader in partition pr. Consider id to
be a map associating a unique string for each set of queries in Q, and idn to do the
same for each PWDG node. For each PWDG node, n = (p,B), with more than one
writer, add activities to the process of participant p as described in Algorithm 1.

April 19, 2008 2:46 WSPC/INSTRUCTION FILE data-dependencies–ws-
ijcis

Maintaining Data Dependencies Across BPEL Process Fragments 13

We define Qsp(n, a, x) to be a function that takes a PWDG node n, a reader a,
and a variable x, and returns a set of tuples where each tuple has a set of queries
and a set of possible writers such that the writers all belong to the same PWDG
node n. These query sets are the same as those in Qs(a, x), but the writer sets are
subsets of those in in Qs(a, x) such that they only contain writers that are included
in the PWDG node, n. A tuple resulting in an empty writer set is not included in
Qsp(n, a, x).

Algorithm 1 Creation of a Local Resolver
1: procedure Create-Local-Resolver-Multiple-Writers(Node n, Activity a, Vari-

able x)
2: Q← Qsp(n, a, x)
3: if p = pr then
4: Add b=new empty, v=new variable, v.name=idn(n)
5: t ←v.name
6: end if
7: if |Q| = 1 then let Q = {qs}
8: if p 6= pr then
9: b ← Create-Sending-Block(name(x))

10: end if
11: for all w ∈ π2(qs) do
12: if type(w)=loop then
13: // see Sec. 5.6
14: else
15: Add link l = (w, b, true())
16: end if
17: end for
18: else // more than one query set
19: if p 6= pr then
20: Add b=new invoke, v=new variable, v.name=idn(n)
21: b.inputVariable=v, b.toPart=(“data”,x), b.joinCondition=”true()”
22: t←v.name
23: end if
24: for all qs ∈ Q do
25: s← Create-Assign-Scope(t,qs)
26: Add link l = (s, b, true())
27: end for
28: end if
29: end procedure

Algorithm 1 presents the creation of a Local Resolver: if the reader is in the
same partition as the writers in this node, then we wait with an ‘empty’ (line 3-6).

If all writers write to the same set of queries, and the node is not in the reader’s
participant, use a sending block (line 9). Create a link from every writer to b, which
is either the empty or the sending block’s invoke (line 7-17). Fig. 4 shows such use
of an invoke for C and D in partition y.

April 19, 2008 2:46 WSPC/INSTRUCTION FILE data-dependencies–ws-
ijcis

14 Rania Khalaf, Oliver Kopp, Frank Leymann

response=vtmp H

B

false

true,responseC

D

r1
vtmp=

r1.data.textr1.status

z
y

r2
vtmp=

r2.data.textr2.status

true,response

false x

jc=true
jc=jc’ /\ (l v ¬l)

Fig. 4. Snippets from processes from the process in Fig. 1 w/ partition P2.

If there is more than one query set (line 18-28), the status for each one needs
to be written. If the reader is in another participant we create an invoke that runs
regardless of the status of the writers (line 19-23). For each query, use a structure
similar to a sending block (i.e.: scope, fault handler) to get the writers’ status
(line 25), but using assigns rather than invokes. The assigns write true or false to a
part of the status variable corresponding to the query. Create links from each writer
of the query set to the assign in the scope (line 11-17 in Create-Assign-Scope,
Algorithm 2). Create a link from the scope to either the empty from line 4 or the
invoke from line 20 (line 26).

Algorithm 2 Functions used by Create-Local-Resolver-Multiple-Writers

function Create-Assign-Scope(String
t, Set qs)

s←new scope
asf ←new assign
s.addFaultHandler(‘joinFailure’,asf)
asf .addCopy

(QStatus-Str(t,qs), false())
s.setActivity(as=new assign)
as.suppressJoinFailure=‘no’
as.addCopy

(QStatus-Str(t,qs), true())
for all w ∈ π2(qs) do

if type(w)=loop then
// see Sec. 5.6

else
Add link l = (w, as, true())

end if
end for
return s

end function

function QStatus-Str(String t, Set qs)
return t + “.status” + id(qs)

end function

function
Create-Sending-Block(String x)

Add s=new scope
invf=new invoke
s.addFaultHandler(‘joinFailure’,invf)
Add v=new variable
invf.inputVariable=v
invf.toPart=(“status”,false())
inv=new invoke
s.setActivity(inv)
inv.inputVariable=v
inv.toPart=(“status”,true())
inv.toPart=(“data”,x)
inv.suppressJoinFailure=”no”
return inv

end function

April 19, 2008 2:46 WSPC/INSTRUCTION FILE data-dependencies–ws-
ijcis

Maintaining Data Dependencies Across BPEL Process Fragments 15

5.4. Receiving Flow (RF)

A Receiving Flow, for a reader a and variable x, is the structure created from a
PWDG that creates the value of x needed by the time a runs. It contains a set of
receive and assign activities, in a’s process, to resolve the write conflicts for x.

Consider pr to be the reader’s partition, and G to be the PWDG from WDG(a,x).
An RF defines a variable, vtmp, whose name is unique to the RF. The need for vtmp

is explained in the next section. A Receiving Flow is created from G as presented in
Algorithm 3:

Algorithm 3 Creating a Receiving Flow
1: procedure Create-Rf(PWDG G)
2: Create a flow F
3: for all n = (p,B) ∈ π1(G) do
4: Process-Node(n)
5: end for
6: for all e = (n1, n2) ∈ π2(G) do
7: for all d ∈ ean1 do
8: Add a link l = (d, ban2 , true())
9: end for

10: end for
11: Add af =new assign
12: af .addCopy(vtmp , x)
13: Add links lf = (F, af , true()) and lr = (af , a, true())
14: a.joinCondition ← a.joinCondition ∧ (lr ∨ ¬lr) // recall that a is the reader
15: end procedure

Create a flow activity (line 2). For each node, we will add a block of constructs to
receive the value of the variable and copy it into appropriate locations in a temporary,
uniquely named variable vtmp (line 3-5). Link the blocks together by connecting
them based on the connections between the partitions, using the first activity ba and
the set of the last activities ea of a block (line 6-10). The subscript is used to identify
which node’s block they are for (i.e.: ean1 is the ea set created in Process-Node(n1).
Link the flow to an assign that copies from vtmp to x (line 11-13). Link the assign
to a and modify a’s join condition to ignore the new link’s status (line 14).

The processing of each PWDG node n, Process-Node, is shown in Algorithm 4.
For each node: If the node is in the same participant as a and has one query set, add
an assign copying from the locations in x to the same locations in vtmp (line 6-9). If
the node has only one writer, link from the writer to the assign (line 10-12). If it
has more than one writer, an empty was created in the Local Resolver (LR), so link
from that empty to the assign (line 20-22). If the node has more than one query set,
create an empty instead of an assign (line 15-18) and create one assign per query
set. Create links from the empty to the new assigns whose status is whether the
query set was successfully written (line 4 in Algorithm 5). Add a copy to each of
these assigns, for every query in the query set, from the locations in x to the same

April 19, 2008 2:46 WSPC/INSTRUCTION FILE data-dependencies–ws-
ijcis

16 Rania Khalaf, Oliver Kopp, Frank Leymann

Algorithm 4 Processing of a PWDG node n
1: procedure Process-Node(Node n) // recall n = (p,B)
2: Q← Qsp(n, a, x), ea← ∅
3: // All activities added in this procedure are added to F
4: if p = pr then
5: if |Q| = 1 then let Q = {qs}
6: ba=new assign
7: for all q ∈ qs do
8: ba.addCopy(name(vtmp) + q, x+ q)
9: end for

10: if |B| = 1 then let B = {b}
11: Add link l0 = (b, ba, true())
12: end if
13: ea← ea ∪ {ba}
14: else
15: ba=new empty
16: for all qs ∈ Q do
17: Create-Q-Assign(qs,”x”,QStatus-Str(idn(n), qs))
18: end for
19: end if
20: if |B| 6= 1 then
21: Add link l0 = (em, ba, true()), where em=empty from LR
22: end if
23: ba.joinCondition ← status(l0)
24: else // p is not pr
25: Add rrb=new receive, rrb.joinCondition = true(), rrb.variable = ri
26: ba = rrb
27: if |Q| = 1 then, let Q = {qs}
28: Create-Q-Assign(qs, “ri.data”,“ri.status”)
29: else
30: for all qs ∈ Q do
31: Create-Q-Assign(qs, “ri.data”, QStatus-Str(ri, qs))
32: end for
33: end if
34: end if
35: end procedure

locations in vtmp (line 5-7 in Algorithm 5). Then set the join condition of the empty
or assign to only run if the data was valid (line 23).

If the node is another partition, create a receiving block instead of an assign
(line 25). Set the join condition of the receive to true so it is never skipped. Again
copy the queries into a set of assigns (line 27-34).

Fig. 5 shows two examples for partition P1 of our scenario. The top creates
pymtInfo for G: The value of amt may come from B, C, or D but actNum always
from B. The bottom creates orderInfo for F. Notice how A’s write is incorporated
into the RF even though A and F are in the same participant.

Note that Receiving Flows reproduce the building of the actual variable using

April 19, 2008 2:46 WSPC/INSTRUCTION FILE data-dependencies–ws-
ijcis

Maintaining Data Dependencies Across BPEL Process Fragments 17

Algorithm 5 Creation of the assigns for each query
1: procedure Create-Q-Assign(Set qs, String var, String statusP)
2: Add act=new assign
3: ea← ea ∪ {act}
4: Add link l = (ba, act , statusP)
5: for all q ∈ qs do
6: act.addCopy(name(vtmp) + q, var + q)
7: end for
8: end procedure

jc=true

pymtInfo=vtmp Gr1

vtmp.actNum=
r1.data.actNum,

vtmp.amt=
r1.data.amt

r1.statusw

From C in yFrom B in x

r3
vtmp.amt=

r3.data.amtr2.status

r2
vtmp.amt=

r2.data.amtr2.status

jc=true

From D in z

orderInfo=or1
vtmp.orderStatus=

r1.data.orderStatusr1.statusvtmp=orderInfo

A

F

From E in ‘y’

z

jc=jc’ /\ (l v ¬l)

jc=jc’ /\ (l v ¬l)

jc=true

jc=true

Fig. 5. Two RFs using partition P1. Top: pymtInfo to G in w. Bottom: orderInfo to F in z.

BPEL semantics. Thus, the behavior of the original process is mirrored, not changed.

5.4.1. Multiple RFs and the Trailing Assign

Consider multiple readers of the same variable placed in the same participant. Each
RF writes to its local temporary variable, and only copies to the shared variable
when the trailing assign at the end of the RF is reached. This temporary variable
is used so that messages arriving out of order or to multiple RFs concerned with
the same variable do not incorrectly overwrite each other’s values. The algorithms
require that the original process adhere to the Bernstein Criterion; otherwise, one
cannot guarantee that RFs with overlapping WDGs do not interfere with each
other’s writes.

5.5. The End-of-Split-Activity Data Receiving Block

A modification to the receiving block pattern presented in the Sec. 3 and illustrated
in Fig. 3 is needed in the case of split activities (loops and scopes) when data is
needed after the split activity completes. For example, data needed after a loop. We
call this modified pattern the end-of-split-activity data receiving block and use it in
Sec. 5.6 and Sec. 5.7. It is illustrated during the elaboration of data needed from

April 19, 2008 2:46 WSPC/INSTRUCTION FILE data-dependencies–ws-
ijcis

18 Rania Khalaf, Oliver Kopp, Frank Leymann

one loop iteration to the next in Sec. 5.6, Fig. 6.
The modification itself is as follows: the assign activity is not the source of a

link. To ensure that the end-of-split-activity data receiving block is executed after
all activities in the body of the split activity, a link is placed to the receive activity
of the receiving block from each of the activities, in the fragment of the scope/loop
in which the receiving block is being placed, that have no outgoing links. The join
condition of the receive activity is set to ignore the status of all these incoming links.

5.6. Data in Split Loops

As control in loops is not point-to-point as is the case for basic flows, providing
the data needs to be handled somewhat differently. However, the intuition remains
the same: patterns of BPEL activities are used to send and receive and reconstruct
the values of the variables between fragments. The approach we take for dealing
with loops is to treat the activities in a loop as a process themselves. Then, one
may reuse the above approach for handling data flow for activities in the same loop
iteration: Data from other fragments in the same iteration is treated like data from
other parts of the process in the non-loop case. However, if the reader also needs the
value of the variable from a previous iteration, then additional constructs are needed
as explained in the subsequent paragraph handling data between loop iterations.
To complete the picture, we must therefore address: data needed before the loop
starts, data created in one iteration that is needed in a subsequent iteration, and
data needed after the loop completes.

In order to provide the data needed before a loop iteration begins to all necessary
loop fragments, the algorithms treat the entire loop itself as a reader. In our sample
process, the split loop needs ‘delivered’ and ‘orderInfo’ before its iteration begins. For
every variable v read inside a split loop l that is written outside of l, the algorithms in
the previous sections are used in the same manner, except starting with Qpreloop

s (l, v)
instead of Qs(a, v). However, the loop is fragmented and more than one fragment
may read the v. Each such fragment will need a receiving block. Thus, additional
invokes will be added to the sending blocks to send to all the fragments. Fig. 6
illustrates this by showing the value of ‘delivered’ being sent from fragment ‘x’ and
received at fragments ‘y’ and ‘w’ of the split loop I. Notice that the sending blocks
are collapsed. This is an optimization allowed in the case of multiple data sending
blocks from the same activity to different fragments by placing all the invokes in the
same scope. Note that it is possible to also reduce complexity in the case that the
Receiving Flow (of data needed before the loop) is complex: place it in one fragment
and forwarding the final value of the variable from that fragment to the others.

Data needed from one loop iteration to the next, and/or from the values collected
before the loop, is now considered. An example is the variable ‘delivered’ in our
sample process. Data needed in the next iteration needs to be gathered at the end
of the current iteration in the fragment(s) that need it. It is handled by using the
algorithms provided for the non-loop case but starting with Qintraloop

s (l, v) instead of

April 19, 2008 2:46 WSPC/INSTRUCTION FILE data-dependencies–ws-
ijcis

Maintaining Data Dependencies Across BPEL Process Fragments 19

delivered
=vtmp

Iw

E

r1
vtmp.=

r1.datar1.status

w
y

true,delivered

false

xtrue,delivered

false

delivered
=vtmp

Iyr1
vtmp.=

r1.datar1.status

jc=jc’ /\ (l v ¬l)

jc=jc’ /\ (l v ¬l)

Fig. 6. Getting ‘delivered’ to the split loop fragments before iteration begins

r
delivered=r.data

r.statusfalse

true,delivered

y wIy
Iwdelivered < orderInfo.numDeliveries

deliverSubShipment(delivered, orderInfo)Jdelivered +=1 K

jc=true

Fig. 7. Getting ‘delivered’ to the split loop fragments before iteration begins

Qs(a, v). The difference is that the receiving block is an end of split activity receiving
block. The receiving block may need to be placed in more than one fragment and if
so extra invokes are added in the sending blocks in the same manner. An example
of using the value of ‘delivered’ written by J in one iteration of the split loop I and
read by J in the next is shown in Fig. 7.

If there is at least one reader activity in the fragment of the loop that also needs
the value of the variable from both its current iteration and its previous iterations
(i.e.: it also needs a receiving block), then an assign activity is added in that fragment
of the loop. For each such reader: (1) the assign activity copies from the variable to
the target variable of the reader’s receiving block and (2) a link is created from the
assign to the first activity (receive or flow) in the receiving block.

The last case to consider is that of data written in a loop that is needed after the
loop ends. This will be the case when a loop itself appears as a node in a PWDG. If
the loop is split, then the splitting algorithms assign the corresponding PWDG node
to one participant called the owning participant. This participant’s fragment will be
responsible for collecting and sending the data. The data is valid if it was written by
a writer in at least one iteration of the loop. Therefore, a status variable is created
in the owning participant’s fragment and initialized to false before the loop starts.

If all writers are in the owning participant’s fragment, then an assign activity is
created for each writer. A link is created from each writer to the respective assign.
The assign contains one copy statement that copies ‘true’ to the status of the data.

April 19, 2008 2:46 WSPC/INSTRUCTION FILE data-dependencies–ws-
ijcis

20 Rania Khalaf, Oliver Kopp, Frank Leymann

In the case that at least one writer is in another fragment of the loop, the data
is collected at the owning participant’s fragment by creating an end-of-split-activity
data receiving block inside the loop. This receiving block and its corresponding
sending blocks are constructed starting from Qpostloop

s (l, v) and treated as being in
the owning participant’s fragment. The receiving block is modified such that the
value of the status of the owning participant’s fragment is set to true if at least one
writer was successful: An additional copy statement is added to each assign in the
receiving block that copies from ‘true’ to the status of the data. Thus, the value and
status are made available at that fragment once the loop completes.

Having explained how the owning participant’s fragment collects the value of the
variable, we move on to explaining how this fragment sends the data to the fragments
that need it: A sending block is created in the owning participant’s fragment outside
the loop. The change for loops is the writer is now the loop itself, and the sending
block link from the writer has a transition condition: the status of the data. There
is no special treatment needed for the corresponding receiving block(s).

5.7. Data in Split Scopes

The subset of BPEL we support enables splitting scopes with compensation handlers
and/or fault handlers. Therefore, we focus in this section on how data flows into
and out of these constructs when a scope (and possibly its handlers themselves) are
split.

For the case of fault handlers, we restrict data flow into the handler to data
coming from the faulting activity. This will be sent to the handlers using the
coordination framework that supports re-enacting the control of scopes upon their
fragmentation. Thus, this leaves data between activities in a split fault handler as
well as data written in a fault handler that is needed outside the fault handler. The
former is handled by simply treating the handler itself as a process as was done for
activities in a flow or activities in the same iteration of a loop. The latter is already
handled by the algorithms presented above for creating sending and receiving blocks;
however, care must be taken in the placement of the sending and receiving blocks:
A cross-scope dependency must remain a cross-scope dependency. In other words,
the sending block for data written in a scope (whether in the scope body or any of
its fault/compensation handlers) and whose reader is not in that same scope must
be placed outside the scope. To be more precise, it must be placed in the smallest
ancestor scope that contains both reader and writer. This ensures that the sending
block is not killed by scope disablement while the receiving block is still active at
another fragment. A side note is that this is also true for control sending/receiving
blocks.

The last item to address is that of compensation handlers. A compensation
handler is restricted to behave as in BPEL 1.1: to only read data visible at the time
its scope instance completed and to write data only visible to other activities also
in the same compensation handler. Therefore, data needed between activities of a

April 19, 2008 2:46 WSPC/INSTRUCTION FILE data-dependencies–ws-
ijcis

Maintaining Data Dependencies Across BPEL Process Fragments 21

split compensation handler is treated in the same way as data between activities of
a process. The novelty is in determining how data written outside the handler and
read inside it is provided to the handler fragments.

Data needed for the compensation handler, h, is assembled by repeating the
steps for a reader activity in the non-split scope case, but treating the handler itself
as the reader. Therefore, one runs the algorithms above starting with Qhandler

s (h, v)
for every variable v read in the handler and written in the body of the scope. The
difference is the placement of the receiving block: An end-of-split-activity data
receiving block is used where the split activity is the corresponding scope. In line
with the treatment for loops, if more than one fragment of the handler reads the
variable, then a receiving block is placed in each such fragment and the sending
blocks have extra invokes added to send to the fragments.

6. Conclusion and Future Work

We provided an algorithm for splitting BPEL processes using BPEL itself for proper
data communication between participants; furthermore, splits are transparent, i.e. it
is clear where the changes are and they are done in the same modeling abstractions
as the main process model. This has been achieved by use of Local Resolvers and
Receiving Flows as long as the original process respects the Bernstein Criterion. If
not, one would have to take into consideration actual completion times of activities,
which goes beyond BPEL’s capabilities. Having placed the activities that handle
data and control dependencies at the boundaries of the process and used naming
conventions on the operations, we enable graphical/text-based filters to toggle views
between the activities of the non-split process and the ‘glue’ activities we have added.
The difficulty in maintaining data dependencies in BPEL is due to unique situations
(Sec. 2), such as the ability to ‘revive’ a dead path with an ‘or’ join condition,
resulting from dead-path elimination and parallelism.

Our future work includes optimizations such as merging overlapping RFs and
targeted data-flow analysis. A first step for optimization is the application of the
work presented by Balansundaram and Kennedy25, Kennedy and Nedeljkovi26, and
Sarkar27 to BPEL. Other directions include effects of toggling DPE and using the
information of whether a split is exclusive or parallel by analyzing link transition
conditions. Another aspect is to provide an implementation of the algorithm and
perform quantitive evaluation on the process fragments it outputs.

Acknowledgments

Jussi Vanhatalo, for suggesting local resolution with one invoke, inspiring the current
Local Resolver. David Marston, for his valuable review. Oliver Kopp is funded by
Tools4BPEL project, which in turn is funded by the German Federal Ministry of
Education and Research (project no. 01ISE08).

This paper is the extended version of the paper of the same title published
in the proceedings of International Conference on Service-Oriented Computing

April 19, 2008 2:46 WSPC/INSTRUCTION FILE data-dependencies–ws-
ijcis

22 Rania Khalaf, Oliver Kopp, Frank Leymann

(ICSOC 2007)28. The extensions included additional details as well as the support
for split loops and scopes.

References

1. R. Khalaf and F. Leymann, Role-based Decomposition of Business Processes using
BPEL, in ICWS 2006 (IEEE Computer Society, 2006), pp. 770–780, doi:10.1109/
ICWS.2006.56.

2. OASIS, Web Services Business Process Execution Language Version 2.0 – OASIS
Standard, Tech. rep., Organization for the Advancement of Structured Information
Standards (OASIS) (2007).

3. F. Curbera, R. Khalaf, F. Leymann and S. Weerawarana, Exception Handling in the
BPEL4WS Language, in Proc. of the Conference on Business Process Management
(BPM 2003), edited by W. M. P. van der Aalst, A. H. M. ter Hofstede and M. Weske,
LNCS, vol. 2678 (Springer, Eindhoven, the Netherlands, 2003), pp. 276–290, doi:
10.1007/3-540-44895-0 19.

4. C. Fidge, Logical Time in Distributed Computing Systems, IEEE Computer 24(8)
(1991) pp. 28–33, doi:10.1109/2.84874.

5. J.-L. Baer, A Survey of Some Theoretical Aspects of Multiprocessing, ACM Computing
Surveys 5 (1973) pp. 31–80, doi:10.1145/356612.356615.

6. F. Leymann and W. Altenhuber, Managing business processes as an information
resource, IBM Systems Journal 33(2) (1994) pp. 326–348.

7. OASIS, Web Services Coordination (WS-Coordination) Version 1.1 (2007), oASIS
Standard.

8. R. Khalaf, From RosettaNet PIPs to BPEL processes: A three level approach for business
protocols, Data Knowl. Eng. 61(1) (2007) pp. 23–38, doi:10.1016/j.datak.2006.04.006.

9. M. Paluszek, Coordinating Distributed Loops and Fault Handling, Transactional Scopes
using WS- Coordination protocols layered on WS-BPEL services, Diploma thesis,
University of Stuttgart, Faculty of Computer Science, Electrical Engineering, and Infor-
mation Technology, Germany (2007), URL http://www.informatik.uni-stuttgart.

de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=DIP-2586&engl=1.
10. R. Khalaf, D. Karastoyanova and F. Leymann, Pluggable Framework for Enabling the

Execution of Extended BPEL Behavior, in Proc. of the 3rd ICSOC Int’l Workshop on
Engineering Service-Oriented Application: Analysis, Design and Composition (WESOA
2007), LNCS (Springer, 2007).

11. R. Khalaf and F. Leymann, Coordination Protocols for Split BPEL Loops and Scopes,
Tech. Rep. 2007/01, University of Stuttgart, Faculty of Computer Science, Electrical
Engineering, and Information Technology, Germany, University of Stuttgart, Insti-
tute of Architecture of Application Systems (2007), URL http://www.informatik.

uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=TR-2007-01&engl=1.
12. R. Y. Khalaf, Supporting Business Process Fragmentation While Maintaining Op-

erational Semantics – A BPEL Perspective, Doctoral Thesis, Universität Stuttgart
(2008).

13. M. G. Nanda and N. M. Karnik, Synchronization Analysis For Decentralizing Composite
Web Services, Int. Journal of Cooperative Information Systems 13(1) (2004) pp. 91–119,
doi:10.1142/S0218843004000900.

14. W. Aalst and M. Weske, The P2P approach to Interorganizational Workflows, in
Proceedings of the 13th International Conference on Advanced Information Systems
Engineering (CAiSE’01), edited by K. Dittrich, A. Geppert and M. Norrie, LNCS, vol.
2068 (Springer, 2001), pp. 140–156, doi:10.1007/3-540-45341-5 10.

April 19, 2008 2:46 WSPC/INSTRUCTION FILE data-dependencies–ws-
ijcis

Maintaining Data Dependencies Across BPEL Process Fragments 23

15. P. Muth, D. Wodtke, J. Weissenfels, A. Dittrich and G. Weikum, From Central-
ized Workflow Specification to Distributed Workflow Execution, Journal of Intelligent
Information Systems 10(2) (1998) pp. 159–184, doi:10.1023/A:1008608810770.

16. T. J. Lehman, S. W. McLaughry and P. Wyckoff, T Spaces: The Next Wave, in Pro-
ceedings of the 32nd Hawaii International Conference on System Sciences (HICSS’99)
(Island of Maui, Hawaii, USA, 1999).

17. C. Schuler, R. Weber, H. Schuldt and H.-J. Schek, Peer-to-Peer Process Execution with
Osiris, in ICSOC 2003, edited by M. E. Orlowska, S. Weerawarana, M. P. Papazoglou
and J. Yang, LNCS, vol. 2910 (Springer, 2003), pp. 483–498, doi:10.1007/b94513.

18. M. Dumas, T. Fjellheim, S. Milliner and J. Vayssière, Event-Based Coordination
of Process-Oriented Composite Applications, in Business Process Management, 3rd
International Conference, BPM 2005, edited by W. M. P. van der Aalst, B. Benatallah,
F. Casati and F. Curbera, vol. 3649 (2005), pp. 236–251, doi:10.1007/11538394 16.

19. B. Benatallah, M. Dumas and Q. Z. Sheng, Facilitating the Rapid Development and
Scalable Orchestration of Composite Web Services, Journal of Distributed and Parallel
Databases 17(1) (2005) pp. 5–37, doi:10.1023/B:DAPD.0000045366.15607.67.

20. A. V. Aho, M. S. Lam, R. Sethi and J. D. Ullman, Compilers: Principles, Techniques,
and Tools (Addison Wesley, 2006).

21. J. Lee, S. P. Midkiff and D. A. Padua, Concurrent Static Single Assignment Form
and Constant Propagation for Explicitly Parallel Programs, in Proceedings of the 10th
International Workshop on Languages and Compilers for Parallel Computing, LNCS,
vol. 1366 (Springer, 1997), pp. 114–130, doi:10.1007/BFb0032687.

22. S. Moser, A. Martens, K. Görlach, W. Amme and A. Godlinski, Advanced Verification
of Distributed WS-BPEL Business Processes Incorporating CSSA-based Data Flow
Analysis, in Proceedings of IEEE International Conference on Services Computing
(SCC 2007) (2007), pp. 98–105, doi:10.1109/SCC.2007.22.

23. O. Kopp, R. Khalaf and F. Leymann, Deriving Explicit Data Links in WS-BPEL
Processes, in Proc. of the International Conference on Services Computing, Industry
Track, SCC 2008 (IEEE Computer Society Press, Honolulu, Hawaii, USA, 2008), to
appear.

24. O. Kopp, R. Khalaf and F. Leymann, Reaching Definitions Analysis Respecting Dead
Path Elimination Semantics in BPEL Processes, Technical Report Computer Science
2007/04, University of Stuttgart, Faculty of Computer Science, Electrical Engineer-
ing, and Information Technology, Germany (2007), URL http://www.informatik.

uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=TR-2007-04&engl=1.
25. V. Balasundaram and K. Kennedy, A Technique for Summarizing Data Access and Its

Use in Parallelism Enhancing Transformations, in Proceedings of the ACM SIGPLAN
’89 Conference on Programming Language Design and Implementation (Portland,
Oregon, 1989), pp. 41–53, doi:10.1145/74818.74822.

26. K. Kennedy and N. Nedeljković, Combining Dependence and Data-Flow Analyses to
Optimize Communication, in Proceedings of the 9th International Parallel Processing
Symposium (Santa Barbara, CA, 1995), pp. 340–346, doi:10.1109/IPPS.1995.395954.

27. V. Sarkar, Analysis and Optimization of Explicitly Parallel Programs Using the Parallel
Program Graph Representation, in Proceedings of the 10th International Workshop on
Languages and Compilers for Parallel Computing (LCPC ’97), edited by Z. Li, P.-C.
Yew, S. Chatterjee, C.-H. Huang, P. Sadayappan and D. C. Sehr, LNCS, vol. 1366
(Springer, 1998), pp. 94–113, doi:10.1007/BFb0032686.

28. R. Khalaf, O. Kopp and F. Leymann, Maintaining Data Dependencies Across BPEL
Process Fragments, in Service-Oriented Computing – ICSOC 2007, edited by B. J.
Krämer, K.-J. Lin and P. Narasimhan, LNCS, vol. 4749 (Springer, 2007), pp. 207–219,

April 19, 2008 2:46 WSPC/INSTRUCTION FILE data-dependencies–ws-
ijcis

24 Rania Khalaf, Oliver Kopp, Frank Leymann

doi:10.1007/978-3-540-74974-5 17.

All links were last followed on April, 14 2008.

	cover.pdf
	Foliennummer 1

